49 research outputs found

    Flow of Deposited Inorganic N in Two Gleysol-dominated Mountain Catchments Traced with 15NO3− and 15NH4+

    Get PDF
    Abstract.: In two mountain ecosystems at the Alptal research site in central Switzerland, pulses of 15NO3 and 15NH4 were separately applied to trace deposited inorganic N. One forested and one litter meadow catchment, each approximately 1600m2, were delimited by trenches in the Gleysols. K15NO3 was applied weekly or fortnightly over one year with a backpack sprayer, thus labelling the atmospheric nitrate deposition. After the sampling and a one-year break, 15NH4Cl was applied as a second one-year pulse, followed by a second sampling campaign. Trees (needles, branches and bole wood), ground vegetation, litter layer and soil (LF, A and B horizon) were sampled at the end of each labelling period. Extractable inorganic N, microbial N, and immobilised soil N were analysed in the LF and A horizons. During the whole labelling period, the runoff water was sampled as well. Most of the added tracer remained in both ecosystems. More NO3− than NH4+ tracer was retained, especially in the forest. The highest recovery was in the soil, mainly in the organic horizon, and in the ground vegetation, especially in the mosses. Event-based runoff analyses showed an immediate response of 15NO3− in runoff, with sharp 15N peaks corresponding to discharge peaks. NO3− leaching showed a clear seasonal pattern, being highest in spring during snowmelt. The high capacity of N retention in these ecosystems leads to the assumption that deposited N accumulates in the soil organic matter, causing a progressive decline of its C:N rati

    Long-term tracing of whole catchment 15N additions in a mountain spruce forest: measurements and simulations with the TRACE model

    Get PDF
    Despite numerous studies on nitrogen (N) cycling in forest ecosystems, many uncertainties remain, particularly regarding long-term N accumulation in the soil. Models validated against tracer isotopic data from field labeling experiments provide a potential tool to better understand and simulate C and N interactions over multiple decades. In this study, we describe the adaptation of the dynamic process-based model TRACE to a new site, Alptal, where long-term N-addition and 15N-tracer experiments provide unique datasets for testing the model. We describe model parameterization for this spruce forest, and then test the model with 9- and 14-year time series of 15N-tracer recovery from control and N-amended catchments, respectively. Finally, we use the model to project the fate of ecosystem N accumulation over the next 70years. Field 15N recovery data show that the major sink for N deposition is the soil. On the control plot, tracer recovery in the soil increased from 32% in the second year to 60% in the ninth year following tracer addition, whereas on the N-saturated plot, soil recovery stayed almost constant from 63% in the third year to 61% in the twelfth year. Recovery in tree biomass increased over the decadal time scale in both treatments, to ca. 10% over 9years on the control plot and ca. 13% over 14years on the N-amended plot. We then used these time series to validate TRACE, showing that the adaptation and calibration procedure for the Alptal site was successful. Model-data comparison identified that the spreading method of 15N tracers needs to be considered when interpreting recovery results from labeling studies. Furthermore, the ground vegetation layer was recognized to play an important role in controlling the rate at which deposited N enters soil pools. Our 70-year model simulation into the future underpinned by a Monte-Carlo sensitivity analysis, suggests that the soil is able to immobilize a constant fraction of 70 and 77% of deposited N for the treated and the control plot, respectively. Further, the model showed that the simulated increased N deposition resulted in a relatively small elevated C sequestration in aggrading wood with an N use efficiency of approximately 7kg C per kgN adde

    Strengthening climate resilience of rural communities by co-producing landscape-specific integrated farming systems in Cambodia

    Get PDF
    Climate change poses a major threat to the livelihoods of rural smallholder farmers in Cambodia. Adaptation measures through sustainable land management (SLM) and farming practices can help farmers to increase their resilience to climate change and secure their livelihoods. This paper presents a novel approach for promoting landscape-specific integrated farming systems (IFS) through multi-stakeholder engagement, knowledge-based decision-making and improved land use planning. It presents a stepwise participatory approach, applied under an IFAD-funded project, to define context-specific IFS models. Through co-production processes with multiple stakeholders, three landscape units and seven landscape-specific IFS models consisting of different SLM technologies were defined and demonstrated on 1,500 farms in two case study sites. The process included training and awareness raising to enhance local stakeholder engagement in developing integrated farm plans. This paper provides insights into how such a novel approach can be embedded in rural development projects to enhance smallholders’ resilience and livelihoods

    Tools for better SLM knowledge management and informed decision-making in addressing land degradation at different scales: the WOCAT–LADA–DESIRE methodology

    Get PDF
    Desertification research conventionally focuses on the problem – that is, degradation – while neglecting the appraisal of successful conservation practices. Based on the premise that Sustainable Land Management (SLM) experiences are not sufficiently or comprehensively documented, evaluated, and shared, the World Overview of Conservation Approaches and Technologies (WOCAT) initiative (www.wocat.net), in collaboration with FAO’s Land Degradation Assessment in Drylands (LADA) project (www.fao.org/nr/lada/) and the EU’s DESIRE project (http://www.desire-project.eu/), has developed standardised tools and methods for compiling and evaluating the biophysical and socio-economic knowledge available about SLM. The tools allow SLM specialists to share their knowledge and assess the impact of SLM at the local, national, and global levels. As a whole, the WOCAT–LADA–DESIRE methodology comprises tools for documenting, self-evaluating, and assessing the impact of SLM practices, as well as for knowledge sharing and decision support in the field, at the planning level, and in scaling up identified good practices. SLM depends on flexibility and responsiveness to changing complex ecological and socioeconomic causes of land degradation. The WOCAT tools are designed to reflect and capture this capacity of SLM. In order to take account of new challenges and meet emerging needs of WOCAT users, the tools are constantly further developed and adapted. Recent enhancements include tools for improved data analysis (impact and cost/benefit), cross-scale mapping, climate change adaptation and disaster risk management, and easier reporting on SLM best practices to UNCCD and other national and international partners. Moreover, WOCAT has begun to give land users a voice by backing conventional documentation with video clips straight from the field. To promote the scaling up of SLM, WOCAT works with key institutions and partners at the local and national level, for example advisory services and implementation projects. Keywords: Sustainable Land Management (SLM), knowledge management, decision-making, WOCAT–LADA–DESIRE methodology
    corecore